某地有一座圆弧形拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一艘宽3米,船舱顶部为长方形并高出^

问题描述:

某地有一座圆弧形拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一艘宽3米,船舱顶部为长方形并高出
^

连接ON,OB,通过求距离水面2米高处即ED长为2时,桥有多宽即MN的长与货船顶部的3米做比较来判定货船能否通过(MN大于3则能通过,MN小于等于3则不能通过).先根据半弦,半径和弦心距构造直角三角形求出半径的长,再根据Rt△OEN中勾股定理求出EN的长,从而求得MN的长.如图,连接ON,OB.
如图,连接ON,OB.
∵AB=7.2,CD=2.4,
∴BD=3.6.
设OB=OC=ON=r,则OD=r-2.4.
在Rt△BOD中,r2=(r-2.4)2+3.62,
解得r=3.9.
在Rt△OEN中,EN2=ON2-OE2=3.92-3.52=2.96,
∴EN= .
∴MN=2EN=2× ≈3.44米>3米.
∴此货船能顺利通过这座拱桥.