已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,长轴长为4,M为右顶点,过右焦点F的直线与椭圆交于A、B两点,直线AM、BM分别交于P、Q两点,(P、Q两点不重合)(1)求椭圆的标准方程(2)当直线AB与x轴垂直时,求证:向量FP*FQ=0(3)当直线AB的斜率为2时,结论(2)是否还成立,若成立,请证明;若不成立,说明理由已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,长轴长为4,M为右顶点,过右焦点F的直线与椭圆交于A、B两点,直线AM、BM与x=4分别交于P、Q两点,(P、Q两点不重合)(1)求椭圆的标准方程(2)当直线AB与x轴垂直时,求证:向量FP*FQ=0(3)当直线AB的斜率为2时,结论(2)是否还成立,若成立,请证明;若不成立,说明理由
问题描述:
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,长轴长为4,M为右顶点,过右焦点F的直线与椭圆交于A、B两点,直线AM、BM分别交于P、Q两点,(P、Q两点不重合)(1)求椭圆的标准方程(2)当直线AB与x轴垂直时,求证:向量FP*FQ=0(3)当直线AB的斜率为2时,结论(2)是否还成立,若成立,请证明;若不成立,说明理由
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,长轴长为4,M为右顶点,过右焦点F的直线与椭圆交于A、B两点,直线AM、BM与x=4分别交于P、Q两点,(P、Q两点不重合)(1)求椭圆的标准方程(2)当直线AB与x轴垂直时,求证:向量FP*FQ=0(3)当直线AB的斜率为2时,结论(2)是否还成立,若成立,请证明;若不成立,说明理由
答