6x4+7x3-36x2-7x+6 4x4-4x3+13x2-6x+9

问题描述:

6x4+7x3-36x2-7x+6 4x4-4x3+13x2-6x+9

1.原式=6x^4-12x^3+19x^3-38x^2+2x^2+7x+6
=6x^3(x-2)+19x^2(x-2)+(2x-3)(x-2)
=(6x^3+19x^2+2x-3)(x-2)
=(6x^3+3x^2+16x^2+2x-3)(x-2)
=(2x+1)(3x^2+8x-3)(x-2)
=(x+3)(3x+1)(2x+1)(x-2)
2.这题本人用的是待定系数法。
首先,分析9的约数,各个代入,不存在一次因式。
令原式=(4x^2+ax+b)(x^2+cx+d)
无解。
所以原式只能分解成(2x^2+ax+b)(2x^2+cx+d)
解之有a=c=-1,b=d=3,所以原式=
(2x^2-x+3)^2

第一题:原式=6(x4+1)+7x(x2-1)-36x2
=6〔(x4-2x2+1)+2x2〕+7x(x2-1)-36x2
=6[(x2-1)2+2x2]+7x(x2-1)-36x2
=6(x2-1)2+7x(x2-1)-24x2
=[2(x2-1)-3x〕〔3(x2-1)+8x]
=(2x2-3x-2)(3x2+8x-3)
=(2x+1)(x-2)(3x-1)(x+3).