已知:如图所示,四边形ABCD中∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM形状又如何?说明理由;(3)在(2)的条件下,若∠BAC=30°,∠ACD=45°,求四边形BNDM的各内角的度数.

问题描述:

已知:如图所示,四边形ABCD中∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO并延长MO到N,使NO=MO,连接BN与ND.

(1)判断四边形BNDM的形状,并证明;
(2)若M是AC的中点,则四边形BNDM形状又如何?说明理由;
(3)在(2)的条件下,若∠BAC=30°,∠ACD=45°,求四边形BNDM的各内角的度数.

(1)四边形BNDM是平行四边形.
证明:如图1,
∵NO=MO,OB=OD,
∴四边形BNDM是平行四边形.
(2)四边形BNDM是菱形
证明:如图2,
∵∠ABC=∠ADC=90°,M是AC的中点,
∴MB=MA=MC=MD.
∵四边形BNDM是平行四边形(已证),
∴平行四边形BNDM是菱形.
(3)如图2,
∵∠ADC=90°,∠ACD=45°,
∴∠CAD=45°.
∵MB=MA=MC=MD,
∴∠MBA=∠MAB=30°,∠MDA=∠MAD=45°.
∴∠BMC=∠MBA+∠MAB=60°,∠DMC=∠MDA+∠MAD=90°.
∴∠BMD=∠BMC+∠DMC=60°+90°=150°.
∵四边形BNDM是菱形,
∴∠BND=∠BMD=150°,BN∥DM.
∴∠NBM+∠BMD=180°,∠BND+∠MDN=180°.
∴∠NBM=30°,∠MDN=30°.
答案解析:(1)根据平行四边形的判定(对角线互相平分的四边形是平行四边形)即可解决问题.
(2)根据直角三角形斜边上的中线等于斜边的一半可证到MB=MD,然后根据菱形的判定(有一组邻边相等的平行四边形是菱形)即可解决问题.
(3)由MB=MA=MC=MD可求出∠BMC、∠DMC,从而可求出∠BMD,进而可求出菱形的其它内角.
考试点:四边形综合题.
知识点:本题考查了平行四边形的判定、菱形的判定、直角三角形斜边上的中线等于斜边的一半、等腰三角形的性质、三角形的外角的性质、平行线的性质等知识,有一定的综合性.