1方+2方+3方+···+n方 从正面推导怎么推

问题描述:

1方+2方+3方+···+n方 从正面推导怎么推

1²+2²+3²+···+n² 从正面推导怎么推
(n+1)³-n³=3n²+3n+1,用n=1,2,3,........,n依次代入得:
2³-1³=3×1²+3×1+1
3³-2³=3×2²+3×2+1
4³+3³=3×3²+3×3+1
............................
(n+1)³+n³=3×n² +×n+1
__________________________+
(n+1)³-1=3(1²+2²+3²+.....+n²)+3(1+2+3+...+n)+n=3(1²+2²+3²+...+n²)+3n(n+1)/2+n
∴1²+2²+3²+...+n²=(1/3)[(n+1)³-1-3n(n+1)/2-n]=(1/6)[2(n+1)³-2-3n(n+1)-2n]
=(1/6)[2n³+3n²+n)=(n/6)(2n²+n+1)=(1/6)n(n+1)(2n+1)

同意楼上的,简洁的还没想好
利用倒叙相加也可以,你自己试试吧

n(n+1)(n+2)-(n-1)n(n+1)=3n²+3n,3(1²+2²+3²++++n²)+3(1+2+3++++n)=n(n+1)(n+2)-(n-1)n(n+1)+(n-1)n(n+1)-(n-2)(n-1)n+++++2x3x4-1x2x3,于是3(1²+2...