待定系数法求解一题(x+1)(x+2)/-x+1=(X+1/A)+(x+2/B)
问题描述:
待定系数法求解一题
(x+1)(x+2)/-x+1=(X+1/A)+(x+2/B)
答
右边通分
=(x+1)(x+2)/[A(x+2)+B(x+1)]
=(x+1)(x+2)/[(A+B)x+(2A+B)]
=(x+1)(x+2)/(-x+1)
所以(A+B)x+(2A+B)=-x+1
所以A+B=-1
2A+B=1
相减
A=2,
B=-1-A=-3