已知向量A=(2cosX,1),向量B=(cosX,√3sin2X)(X∈R),定义函数f(X)=向量A×向量B,若f(x)=1-√3,且x属于闭区间-π/3到π/3,则x=
问题描述:
已知向量A=(2cosX,1),向量B=(cosX,√3sin2X)(X∈R),定义函数f(X)=向量A×向量B,若f(x)=1-√3,且x属于闭区间-π/3到π/3,则x=
答
已知向量A=(2cosX,1),向量B=(cosX,√3sin2X)(X∈R),定义函数f(X)=向量A×向量B,若f(x)=1-√3,且x属于闭区间-π/3到π/3,则x=