数列与不等式综合问题已知数列{Xn}满足X1=4,Xn+1=(Xn^2-3)/(2Xn-4)(1)求证Xn>3(2)求证Xn+1>Xn(3)求数列{Xn}的通项公式(题目中Xn+1,n+1为角标)

问题描述:

数列与不等式综合问题
已知数列{Xn}满足X1=4,Xn+1=(Xn^2-3)/(2Xn-4)
(1)求证Xn>3
(2)求证Xn+1>Xn
(3)求数列{Xn}的通项公式
(题目中Xn+1,n+1为角标)

x(n+1)-3=(x²n-6xn+9)/(2xn-4)=(xn-3)²/2(xn-2)=(xn-2-1)²/2(xn-2)x(n+1)-3=(xn-2)/2-1+1/2(xn-2)≥1-1=0(xn=3时取等号,显然xn不等于3)所以x(n-1)-3>0xn>3x(n+1)-xn=(x²n-3-2x²n+4xn)/(2xn...