化简:(1)−sin(π+α)+sin(−α)−tan(2π+α)tan(α−π)+cos(−α)+cos(π−α);(2)sin(α+nπ)+sin(α−nπ)sin(α+nπ)cos(α−nπ)(n∈Z).

问题描述:

化简:
(1)

−sin(π+α)+sin(−α)−tan(2π+α)
tan(α−π)+cos(−α)+cos(π−α)

(2)
sin(α+nπ)+sin(α−nπ)
sin(α+nπ)cos(α−nπ)
(n∈Z)

(1)原式=

sinα−sinα−tanα
tanα+cosα−cosα
=
−tanα
tanα
=-1;
(2)当n为偶数时,原式=
sinα+sinα
sinαcosα
=
2
cosα

当n为奇数时,原式=
−sinα−sinα
−sinα•(−cosα)
=-
2
cosα

答案解析:两式利用诱导公式化简,计算即可得到结果.
考试点:运用诱导公式化简求值.
知识点:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.