如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.
问题描述:
如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了100步.
(1)根据题意,画出示意图;
(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.
答
知识点:本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.
(1)所画示意图如下:
(2)在△ABC和△DEC中,
,
∠D=∠A DC=AC ∠DCE=∠ACB
∴△ABC≌△DEC,
∴AB=DE,
又∵小刚共走了100步,其中AD走了40步,
∴走完DE用了60步,
步大约50厘米,即DE=60×0.5米=30米.
答:小刚在点A处时他与电线塔的距离为30米.
答案解析:(1)根据题意所述画出示意图即可.
(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.
考试点:全等三角形的应用.
知识点:本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.