如图,正方形ABCD的边BC在等腰直角三角形PQR的斜边QR上,其余两个顶点A,D在PQ,PR上,则PA:PQ等于(  )A. 1:3B. 1:2C. 1:3D. 2:3

问题描述:

如图,正方形ABCD的边BC在等腰直角三角形PQR的斜边QR上,其余两个顶点A,D在PQ,PR上,则PA:PQ等于(  )
A. 1:

3

B. 1:2
C. 1:3
D. 2:3

∵四边形ABCD是正方形,
∴△PAD、△ABQ、△CDR是等腰直角三角形
∴△PAD∽△PQR
∴PA:PQ=AD:QR
设正方形ABCD的边长是a,则AD=a,BQ=CR=BC=a,QR=3a
因而PA:PQ=AD:QR=a:3a=1:3
故选C.
答案解析:四边形ABCD是正方形ABCD,则△PAD、△ABQ、△CDR是等腰直角三角形,则△PAD∽△PQR,利用比例线段可求PA:PQ(可假设正方形的边长等于a,便于计算).
考试点:相似三角形的判定与性质;正方形的性质.


知识点:注意到本题中△PAD、△ABQ、△CDR都是等腰直角三角形,是解决本题的关键.