为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时

问题描述:

为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?

过点C作CE⊥BD于E.
∵AB=40米,
∴CE=40米,
∵阳光入射角为30°,
∴∠DCE=30°,
在Rt△DCE中tan∠DCE=

DE
CE

DE
40
3
3

∴DE=40×
3
3
=
40
3
3
米,
∵AC=BE=1米,
∴DB=BE+ED=1+
40
3
3
=
3+40
3
3
米.
答:新建楼房最高为
3+40
3
3
米.