9/a^4+(5a^2-9)^2/16a^4=1,是怎么整理得:9a^4-90a^2+225=(3a^2-15)^2=0,
问题描述:
9/a^4+(5a^2-9)^2/16a^4=1,是怎么整理得:9a^4-90a^2+225=(3a^2-15)^2=0,
9/a^4+(5a^2-9)^2/16a^4=1,
是怎么整理得:9a^4-90a^2+225=(3a^2-15)^2=0,
完整题目这个样子的
在三角形ABC中,内角A,B,C所对的边分别是a,b,c已知tanA=sinC/2-cosC,c=3
若三角形ABC的面积为3,求cosC
S=1/2*a*b*sinC=3
sinC=3/a^2
cosC=(a^2+b^2-c^2)/2ab=(5a^2-9)/4a^2
sin^2C+cos^2C=1
9/a^4+(5a^2-9)^2/16a^4=1
整理得:9a^4-90a^2+225=(3a^2-15)^2=0
a^2=5,
cosC=(5*5-9)/4*5=4/5
答
两边乘16a^4
144+25a^4-90a²+81=16a^4
所以
9a^4-90a²+225=0
即a^4-10a²+25=0
(a²-5)²=0