(I)方程4x-2x+2-12=0的解集是_; (II)实数x满足log3x=1+|t|(t∈R),则log2(x2-4x+5)的值域是_.

问题描述:

(I)方程4x-2x+2-12=0的解集是______;
(II)实数x满足log3x=1+|t|(t∈R),则log2(x2-4x+5)的值域是______.

(I)令t=2x,则t>0,∴t2-4t-12=0,解得t=2或t=-6(舍)即2x=2;即x=1;故答案为1.(II)∵实数x满足log3x=1+|t|≥1(t∈R),∴实数x满足x≥3,∵函数y=log2x在定义域上是增函数,∴x2-4x+5≥32-4×3+5=2,则原...