ax^3=bx^3=cx^3,且1/x+1/y+1/z=1,那么代数式3^√ax^2+bx^2+cz^2与3^√a+3^√b+3^√c的大小关系
问题描述:
ax^3=bx^3=cx^3,且1/x+1/y+1/z=1,那么代数式3^√ax^2+bx^2+cz^2与3^√a+3^√b+3^√c的大小关系
答
(ax^2+by^2+cz^2)^(1/3)=a^(1/3)+b^(1/3)+c^(1/3)
设ax^3=by^3=cz^3=s^3,
∴
左边=(ax^2+by^2+cz^2)^(1/3)
=(s^3/x+s^3/y+s^3/z)^(1/3)
=[s^3(1/x+1/y+1/z)]^(1/3)
=s
右边=a^(1/3)+b^(1/3)+c^(1/3)
=s/x+s/y+s/z
=s(1/x+1/y+1/z)
=s
∴(ax^2+by^2+cz^2)^(1/3)=a^(1/3)+b^(1/3)+c^(1/3)