有关高数傅里叶级数的问题,求大神指教

问题描述:

有关高数傅里叶级数的问题,求大神指教
设f(x)=x²(0≤x<1),s(x)=∑bn sin nπx,其中bn=2∫x² sin n πx dx(n=1,2,…),则s(-½)=?
答案是-¼.求详解求大神!

因为函数的展开式∑bn sin nπx 是“正弦”的,
这说明是对f(x)=x²(0≤x<1)在 -1≤x≤0上作“奇”延拓,
所以,和函数s(-½)= -s(½)= -f(½)= -¼.
可以画图看看即知.