某边防部接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶.在追赶过程中,设快艇B相对于海岸的距离为y1(海里),可疑船只A相对于海岸的距离为y2(海里)

问题描述:

某边防部接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶.在追赶过程中,设快艇B相对于海岸的距离为y1(海里),可疑船只A相对于海岸的距离为y2(海里),追赶时间为t(分钟),图中lA、lB分别表示y2、y1与t之间的关系.结合图象回答下列问题:
(1)请你根据图中标注的数据,分别求出y1、y2与t之间的函数关系式,并写出自变量的取值范围;
(2)15分钟内B能否追上A?说明理由;
(3)已知当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度计算,B能否在A逃入公海前将其拦截?

(1)设直线lA的解析式为y=k1x+b,lB的解析式为y=k2x由图象可看出直线lA经过点(0,5),(10,7),将其代入直线lA中得,y=t5+5(t>0),由图象可看出直线lB经过点(10,5)将其代入直线lB中得,y=12t,(t{%>%...