设函数f(x)=x2+|x-2|-1,x∈R. (1)判断函数f(x)的奇偶性; (2)求函数f(x)的最小值.
问题描述:
设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.
答
(1)f(x)=x2+x−3 x≥2x2−x+1,x<2.若f(x)奇函数,则f(-x)=-f(x)所以f(0)=-f(0),即f(0)=0.∵f(0)=1≠0,∴f(x)不是R上的奇函数.又∵f(1)=1,f(-1)=3,f(1)≠f(-1),∴f(x)不...