已知:A={x|ax^2+4x+4=0},且A∩(R+)=∅,求实数a的范围.

问题描述:

已知:A={x|ax^2+4x+4=0},且A∩(R+)=∅,求实数a的范围.
【给思路.】
(R+)是正实数
∅是空集

当a=0时,A={-1}.符合题义
当a≠0时,
(一)设ax^2+4x+4=0的根是x1,x2,根的判别式:4^2-4*a*4≥0得a≤1
因为A∩(R+)=空集即x1≤0,x2≤0,所以x1+x2≤0,x1*x2≤0即-4/a≤0,4/a≥0,得a>0
所以有:0