如图,在正方形ABCD中PQ分别在线段BC.CD上,BP+QD=PQ利用两角和差的正切公式证明角PAQ=π/4.
问题描述:
如图,在正方形ABCD中PQ分别在线段BC.CD上,BP+QD=PQ利用两角和差的正切公式证明角PAQ=π/4.
答
1.设BP=X,DQ=y,正方形边长为a,角PAQ正切可以用角BAP和角DAQ的正切来表示,再将后面两个角用x,y,a表示的分式(其中含有xy,x+y);
2.在直角三角形CPQ中应用勾股定理找出x,y,a之间的关系在带入上面的分式消去xy即可得到1.