有一正三棱锥和一个正四棱锥,它们的所有棱长都相等,把正三棱锥和正四棱锥的一个全等的面重合. ①说明组合体是什么样的几何体? ②证明你的结论.
问题描述:
有一正三棱锥和一个正四棱锥,它们的所有棱长都相等,把正三棱锥和正四棱锥的一个全等的面重合.
①说明组合体是什么样的几何体?
②证明你的结论.
答
(1)如图所示,是斜三棱柱.
(2)正三棱锥为S-AED,正四棱锥为S-ABCD,
重合的面为△ASD,
如图所示,设AD,BC中点分别为M、N,
由AD⊥平面MNS知平面MES重合;
∵SE=AB=MN,EM=SN,
∴MNSE为平行四边行.
∴ES
MN,又AB
∥ . .
MN,
∥ . .
∴ES
AB,
∥ . .
∴四边形ABSE
为平行四边形,CDES为平行四边形.
∴面SBC∥面EAD,
AB∥CD∥SE,且AB不垂
直平面SBC
∴组合体为斜三棱柱.