已知0<α<π/2,sinα=4/5(1)求(sin²α+sin2α)/(cos²α+cos2α)的值(2)求tan(α-5π/4)的值

问题描述:

已知0<α<π/2,sinα=4/5
(1)求(sin²α+sin2α)/(cos²α+cos2α)的值
(2)求tan(α-5π/4)的值

sinα=4/5
cosa = 3/5
tan a = 4/3
(1) (sin²α+sin2α)/(cos²α+cos2α)
= (16/25 + 2sina cosa) / ( 9/25+ 2cos^2a -1)
= 20
(2) tan(α-5π/4)
= (tana - tan 5π/4) / (1+tana * tan5π/4)
= 1/7

∵0<α<π/2,sinα=4/5∴cosα>0∵(sinα)^2+(cosα)^2=1∴(cosα)^2=1-(sinα)^2=1-(4/5)^2=9/25从而 cosα=3/5又 sin2α=2sinα*cosα=2*4/5*3/5=24/25cos2α=1-2(sinα)^2=1-2*(4/5)^2=1-2*16/25=-7/25∴(sin...