1/3*7+1/7*11+1/11*15+...+1/55*59=?

问题描述:

1/3*7+1/7*11+1/11*15+...+1/55*59=?

14/177 原式=1/4*(1/3-1/7+1/7-1/9+1/9-1/11........+1/57-1/59)=1/4*(1/3-1/59)=14/177

1/3*7+1/7*11+1/11*15+...+1/55*59
=1/4(1/3-1/7+1/7-1/11+...+1/55-1/59)
=1/4(1/3-1/59)
=14/177

因为1/3*7=1/21=1/4*(1/3-1/7)
所以,原式=1/4*(1/3-1/7)+1/4*(1/7-1/11)+……1/4*(1/55-1/59)
=1/4(1/3-1/7+1/7-1/11+……1/55-1/59)
=1/4*(1/3-1/59)
=14/177

有个公式:1/n*(n+4)=(1/n-1/n+4)/4
则原式=(1/3-1/7+1/7-1/11+......+1/55-1/59)/4
=(1/3-1/59)/4
=14/177
答:为14/177