已知3的2x次方=4的3x次方=12的6次方,求3/x+2/y的值令3^2x=4^3y=12^6=K则log3(k)=2X,log4(k)=3y,log12(k)=6 (1)把(1)变形logk(3)=1/2X,logk(4)=1/3Y,logk(12)=1/6logk(3)+logk(4)=1/2x+1/3y即logk(12)=1/2x+1/3y=1/6 分子分母通分即(3y+2x)/6xy又因为:3/x+2/y=(3y+2x)/xy(分子分母通分)两式相差了1/6即(3y+2x)/6xy*6就等于要求的式子,即1/6*6=1 为何log12(k)=6可以转化为logk(12)=1/6
问题描述:
已知3的2x次方=4的3x次方=12的6次方,求3/x+2/y的值
令3^2x=4^3y=12^6=K
则log3(k)=2X,log4(k)=3y,log12(k)=6 (1)
把(1)变形
logk(3)=1/2X,logk(4)=1/3Y,logk(12)=1/6
logk(3)+logk(4)=1/2x+1/3y
即logk(12)=1/2x+1/3y=1/6 分子分母通分即(3y+2x)/6xy
又因为:3/x+2/y=(3y+2x)/xy(分子分母通分)
两式相差了1/6
即(3y+2x)/6xy*6就等于要求的式子,即1/6*6=1
为何log12(k)=6可以转化为logk(12)=1/6
答
log12(k)=6,【利用换底公式:loga b=logc b/(logc a)】
logk(k)/[logk(12)]=6
1/[logk(12)]=6
logk(12)=1/6