如图,某风景区内有一古塔AB,在塔的一侧有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高为3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与

问题描述:

如图,某风景区内有一古塔AB,在塔的一侧有一建筑物,当光线与水平面的夹角是30°时,塔在建筑物的墙上留下了高为3米的影子CD;而当光线与地面的夹角是45°时,塔尖A在地面上的影子E与建筑物的距离EC为15米(B、E、C在一条直线上),求塔AB的高度(结果保留根号).

如图,过点D作DF⊥AB,垂足为F,
∵AB⊥BC,CD⊥BC,
∴四边形BCDF是矩形,
∴BC=DF,CD=BF,
设AB=x米,
在Rt△ABE中,∠AEB=∠BAE=45°,
∴BE=AB=x,
在Rt△ADF中,
∠ADF=30°,AF=AB-BF=x-3,
∴DF=

AF
tan30°
=
3
(x-3),
∵DF=BC=BE+EC,
3
(x-3)=x+15,
解得x=12+9
3

答:塔AB的高度(12+9
3
)米.