关于诱导公式cos330°等于 cos(360°-30°),应该用诱导公式几呢

问题描述:

关于诱导公式
cos330°等于 cos(360°-30°),应该用诱导公式几呢

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα
推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα
其中公式五
  cos(2π-α)=cosα