某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题: 土

问题描述:

某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:

土特产品种
每辆汽车运载量(吨) 8 6 5
每吨土特产获利(百元) 12 16 10
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.

(1)∵8x+6y+5(20-x-y)=120,
∴y=20-3x.
∴y与x之间的函数关系式为y=20-3x.                              (3分)
(2)由x≥3,y=20-3x≥3,即20-3x≥3可得3≤x≤5

2
3

又∵x为正整数,
∴x=3,4,5.                                    (5分)
故车辆的安排有三种方案,即:
方案一:甲种3辆乙种11辆丙种6辆;
方案二:甲种4辆乙种8辆丙种8辆;
方案三:甲种5辆乙种5辆丙种10辆.                                 (7分)
(3)设此次销售利润为W百元,
W=8x•12+6(20-3x)•16+5[20-x-(20-3x)]•10=-92x+1920.
∵W随x的增大而减小,又x=3,4,5
∴当x=3时,W最大=1644(百元)=16.44万元.
答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.(10分)