设x²+xy=3,xy+y²=2,求2x²-xy-3y²的值

问题描述:

设x²+xy=3,xy+y²=2,求2x²-xy-3y²的值

2x²-xy-3y²
=2(x²+xy)-3xy-3y²
=2(x²+xy)-3(xy+y²)
=2×3-3×2
=0

2x²-xy-3y²
=2x²+2xy-3y²-3xy
=2(x²+xy)-3(y²+xy)
=2*3-3*2
=0

2x²-xy-3y²
=2x²+2xy-2xy-xy-3y²
=2x²+2xy-3xy-3y²
=2(x²+xy)-3(xy+y²)
x²+xy=3,xy+y²=2
带入
2*3-3*2=0