高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧
问题描述:
高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧
答
高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所截出部分的外侧