复数题一道
问题描述:
复数题一道
求一个复数z,使得z+4/z为实数,且|z-2|=2
答
设z=a+bi,那么z+4/z=(a+bi)+4(a-bi)/(a^2+b^2)
所以,b=4b/(a^2+b^2),
如果b=0,那么|Z-2|=|a-2|=2,得到a=4(a=0不符合条件),
如果b≠0,那么a^2+b^2=4,
|Z-2|=2,所以|a+(b-2)i|=2,因此(a-2)^2+b^2=4,再由于前面得到的a^2+b^2=4,于是有-4a=-4,于是a=1,b=√3或者b=-√3
因此,满足条件的复数有3个,4,1+√3,1-√3