已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:(1)a1+a2+a3+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6;(4)|a0|+|a1|+|a2|+…+|a7|.
问题描述:
已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:
(1)a1+a2+a3+…+a7;
(2)a1+a3+a5+a7;
(3)a0+a2+a4+a6;
(4)|a0|+|a1|+|a2|+…+|a7|.
答
(1)∵已知(1-2x)7=a0+a1x+a2x2+…+a7x7,∴常数项a0=1.在所给的等式中,令x=1可得a0+a1+a2+a3+…+a7=-1,∴a1+a2+a3+…+a7 =-2.(2)在所给的等式中,令x=1可得a0+a1+a2+a3+…+a7=-1①,令x=-1可得得a0-a1+a2-...
答案解析:(1)根据所给的等式可得常数项a0=1,在所给的等式中,令x=1可得a0+a1+a2+a3+…+a7=-1,从而求得a1+a2+a3+…+a7 的值.
(2)在所给的等式中,分别令x=1、x=-1,可得2个等式,化简这2个等式即可求得a1+a3+a5+a7 的值.
(3)用①加上②再除以2可得 a0+a2+a4+a6 的值.
(4)在(1+2x)7中,令x=1,可得|a0|+|a1|+|a2|+…+|a7|的值.
考试点:二项式系数的性质.
知识点:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于中档题.