、如图,已知在四边形ABCD中,∠B=∠D=90度,AE、CF分别是∠DAB及∠DCB的平分线.1、AE与FC有什么关系2、若将条件“∠B=∠D=90度”换成“∠B=∠D”,其他条件不变,AE与CF的这种关系是否还成立?
、如图,已知在四边形ABCD中,∠B=∠D=90度,AE、CF分别是∠DAB及∠DCB的平分线.
1、AE与FC有什么关系
2、若将条件“∠B=∠D=90度”换成“∠B=∠D”,其他条件不变,AE与CF的这种关系是否还成立?
令AE与CD(或DC的延长线)的交点为G。
∵∠B+∠D=180°,∴A、B、C、D共圆,∴∠BAD+∠BCD=180°。
又∠DAG=∠BAD/2、∠DCF=∠BCD/2,∴∠DAG+∠DCF=90°。
而在Rt△ADG中,显然有:∠DAG+∠DEA=90°,∴∠DAE=∠DCF,∴AG∥FC,
即:AE∥FC。
1、AE∥FC
证明:
∵∠BAD+∠B+∠BCD+∠D=360, ∠B=∠D=90
∴∠BAD+∠BCD=360-(∠B+∠D)=180
∵AE平分∠BAD
∴∠BAE=∠BAD/2
∴∠AEC=∠B+∠BAE=90+∠BAD/2
∵CF平分∠BCD
∴∠BCF=∠BCD/2
∴∠AEC+∠BCF=90+∠BAD/2+∠BCD/2=90+(∠BAD+∠BCD)/2=90+90=180
∴AE∥FC (同旁内角互补,两直线平行)
2、成立
证明:
∵∠BAD+∠B+∠BCD+∠D=360
∴∠BAD+∠BCD=360-(∠B+∠D)
∵AE平分∠BAD
∴∠BAE=∠BAD/2
∴∠AEC=∠B+∠BAE=∠B +∠BAD/2
∵CF平分∠BCD
∴∠BCF=∠BCD/2
∴∠AEC+∠BCF=∠B +∠BAD/2+∠BCD/2
=∠B +(∠BAD+∠BCD)/2
=∠B +[360-(∠B+∠D)]/2
=∠B+180-(∠B+∠D)/2
=180+(∠B-∠D)/2
∵∠B=∠D
∴∠AEC+∠BCF=180
∴AE∥FC (同旁内角互补,两直线平行)
1、AE∥FC证明:∵∠BAD+∠B+∠BCD+∠D=360, ∠B=∠D=90∴∠BAD+∠BCD=360-(∠B+∠D)=180∵AE平分∠BAD∴∠BAE=∠BAD/2∴∠AEC=∠B+∠BAE=90+∠BAD/2∵CF平分∠BCD∴∠BCF=∠BCD/2∴∠AEC+∠BCF=90+∠BA...