请在如图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.
问题描述:
请在如图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.
答
根据分析可得出结果如下图.
答案解析:解此类数独题的关键在于观察那些位置较特殊的方格(对角线上的或者所在行、列空格比较少的),选作突破口.本题可以选择两条对角线上的方格为突破口,因为它们同时涉及三条线,所受的限制最严,所能填的数的空间也就最小.
副对角线上面已经填了2,3,8,6四个数,剩下1,4,5和7,这是突破口.观察这四个格,发现左下角的格所在的行已经有5,所在的列已经有1和 4,所以只能填7.然后,第六行第三列的格所在的行已经有5,所在的列已经有4,所以只能填1.第四行第五列的格所在的行和列都已经有5,所以只能填4,剩下右上角填5.
再看主对角线,已经填了1和2,依次观察剩余的6个方格,发现第四行第四列的方格只能填7,因为第四行和第四列已经有了5,4,6,8,3.再看第五行第五列,已经有了4,8,3,5,所以只能填6.
此时似乎无法继续填主对角线的格子,但是,可观察空格较少的行列,例如第四列已经填了5个数,只剩下1,2,5,则很明显第六格填2,第八格填1,第三格填5.此时可以填主对角线的格子了,第三行第三列填8,第二行第二列填3,第六行第六列填4,第七行第七列填5.
继续依次分析空格较少的行和列(例如依次第五列、第三行、第八行、第二列…),可得出结果
考试点:幻方.
知识点:考查了幻方,解答此题的关键是首先抓住行与列的数字特点,逐行、逐列分析推理得出结论.