分解因式:x(x-1)(x+1)(x+2)-24=______.
问题描述:
分解因式:x(x-1)(x+1)(x+2)-24=______.
答
原式=x(x+1)(x-1)(x+2)-24
=x(x2-1)(x+2)-24
=x(x3+2x2-x-2)-24
=x4+2x3-x2-2x-24
=(x4-2x3)+4x3-x2-2x-24
=x3(x-2)+4x3-8x2+7x2-2x-24
=(x3+4x2)(x-2)+(7x2-14x)+(12x-24)
=(x3+4x2+7x+12)(x-2)
=[(x3+3x2)+(x2+3x)+(4x+12)](x-2)
=(x2+x+4)(x+3)(x-2).
故答案为:(x2+x+4)(x+3)(x-2).
答案解析:原式去括号变形后,利用十字相乘法分解即可.
考试点:因式分解-十字相乘法等.
知识点:此题考查了因式分解-十字相乘法,熟练掌握十字相乘法是解本题的关键.