一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测出沙坑坑沿的圆周长34.54米;②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求圆锥形坑的深度(圆锥的高).(π取3.14,结果精确到0.1米)

问题描述:

一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:

①先测出沙坑坑沿的圆周长34.54米;
②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米.
根据以上测量数据,求圆锥形坑的深度(圆锥的高).(π取3.14,结果精确到0.1米)

取圆锥底面圆心O,连接OS、OA,则
∠O=∠ABC=90°,OS∥BC,
∴∠ACB=∠ASO,
∴△SOA∽△CBA,

OS
BC
=
OA
BA

∴OS=
OA•BC
BA

∵OA=
34.54
≈5.5米,BC=1.6米,AB=1.2米,
∴OS=
5.5×1.6
1.2
≈7.3米,
∴“圆锥形坑”的深度约为7.3米.
故答案为:7.3米.
答案解析:取圆锥底面圆心O,连接OS、OA,OS∥BC可得出△SOA∽△CBA,再由相似三角形的对应边成比例即可解答.
考试点:相似三角形的应用;圆锥的计算.

知识点:本题考查的是相似三角形在实际生活中的运用,根据题意作出辅助线,构造出相似三角形是解答此题的关键.