已知m^2+m=1,求m^3+2m^2+2011

问题描述:

已知m^2+m=1,求m^3+2m^2+2011

(m^2+m)^2=1,m^4+2m^3+m^2=1,m^4+2m^3+m^2=m^2+m,m^4+2m^3=m,m^3+2m^2=1,
原式=2012

m³+2m²+2011
=m(m²+m)+m²+2011
=m+m²+2011
=1+2011
=2012