x^2+y^2-2mx+m^2-4=0, x^2+y^2+2x-4my+4m^2-8=0,两圆相交,求m范围?(m属于(-2.4,-0.4)or(0,2))若 根号(1-x^2)=mx+1有且仅有一个实数解,m范围?(0 or >1 or <-1 )x^2+y^2=1,求(y+2)/(x+1)范围? (【0.75,+无穷))
问题描述:
x^2+y^2-2mx+m^2-4=0, x^2+y^2+2x-4my+4m^2-8=0,两圆相交,求m范围?(m属于(-2.4,-0.4)or(0,2))
若 根号(1-x^2)=mx+1有且仅有一个实数解,m范围?(0 or >1 or <-1 )
x^2+y^2=1,求(y+2)/(x+1)范围? (【0.75,+无穷))
答
(1)圆:x^2+y^2-2mx+m^2-4=0,化成(x-m)^2+y^2=4,其圆心(m,0)半径为2.
x^2+y^2+2x-4my+4m^2-8=0,化成(x+1)^2+(y-2m)^2=9,其圆心(-1,2m)半径为3.
若相交:两圆心距离小于半径之和,大于半径之差.即1