一直角三角形两条直角边的和为7,面积为6,求斜边的长.
问题描述:
一直角三角形两条直角边的和为7,面积为6,求斜边的长.
答
知识点:此题主要利用三角形的面积公式寻找相等关系,同时也考查了勾股定理的内容.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.
设一直角边为x,则另一直角边为9-x,根据题意得
x(7-x)=61 2
解得x=4或x=3
则另一直角边为3或4,
根据勾股定理可知斜边长为
=5.
32+42
答案解析:设一直角边为x,则另一直角边为9-x,可得面积是
x(7-x),根据“面积为6”作为相等关系,即可列方程,解方程即可求得直角边的长,再根据勾股定理求得斜边长.1 2
考试点:一元二次方程的应用;勾股定理.
知识点:此题主要利用三角形的面积公式寻找相等关系,同时也考查了勾股定理的内容.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.