已知(m-2)^2+|2m-n|=0,求m^2-mn+2n^2的值,
问题描述:
已知(m-2)^2+|2m-n|=0,求m^2-mn+2n^2的值,
答
∵(m-2)²+|2m-n|=0
∴m-2=0,2m-n=0
∴m=2,n=4
∴m²-mn+2n²
=2²-2×4+2×4²
=4-8+32
=28
答
∵(m-2)²+|2m-n|=0
∴m-2=0,2m-n=0∴m=2,n=4
∴m²-mn+2n² =2²-2×4+2×4² =4-8+32 =28
答
∵(m-2)^2+|2m-n|=0
∴m-2=0和2m-n=0
∴m=2,n=4
∴m^2-mn+2n^2=4-8+32=28
答
根据题意:
m-2=0 m=2
2m-n=0 n=2×2=4
∴m²-mn+2n²=2²-2×4+2×4²=4-8+32=28
答
∵(m-2)²+|2m-n|=0
∴m-2=0,2m-n=0
∴m=2,n=4
∴m²-mn+2n²
=2²-2×4+2×4²
=4-8+32
=28
答
∵(m-2)^2+Im-nI=0
又(m-2)^2≥0,Im-nI≥0
∴m-2=0,m-n=0
解之得:m=n=2
∴m^2-mn+2n^2=2m^2
=8
若有疑问,欢迎追问。望采纳。