已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.(1)证明:|c|≤1;(2)证明:当-1≤x≤1时,|g(x)|≤2;(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x).

问题描述:

已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.
(1)证明:|c|≤1;
(2)证明:当-1≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x).

(1)证明:由条件当=1≤x≤1时,|f(x)|≤1,取x=0得:|c|=|f(0)|≤1,即|c|≤1.(2)证法一:依题设|f(0)|≤1而f(0)=c,所以|c|≤1.当a>0时,g(x)=ax+b在[-1,1]上是增函数,于是g(-1)≤g(x)≤g(...
答案解析:(1)由条件当=1≤x≤1时,|f(x)|≤1,取x=0得:|c|=|f(0)|≤1,即|c|≤1.
(2)有三种证法,证法一利用g(x)的单调性;证法二利用绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b|;而证法三则是整体处理g(x)与f(x)的关系.
(3)因为a>0,g(x)在[-1,1]上是增函数,g(1)=a+b=f(1)-f(0)=2.由-1≤f(0)=f(1)-2≤1-2=-1,知c=f(0)=-1.由f(x)≥f(0),根据二次函数的性质,直线x=0为f(x)的图象的对称轴,由此得b=0.所以f(x)=2x2-1.
考试点:二次函数的性质;绝对值不等式.
知识点:本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力.具体涉及到二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂.本题综合性较强,其解答的关键是对函数f(x)的单调性的深刻理解,以及对条件“-1≤x≤1时|f(x)|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局.