已知a∈(3π/2 ,2π),且tan((3π/2 )+a)=4/3,则cos(a-(3π/4))的值是?

问题描述:

已知a∈(3π/2 ,2π),且tan((3π/2 )+a)=4/3,则cos(a-(3π/4))的值是?

a∈(3π/2 ,2π) 则 ((3π/2 )+a)∈(3π ,7π/2 ) (a-(3π/4))∈(3π /4,7π/4 ) 设a-3π/4=t,则3π/2 +a=t+9π/4

tan((3π/2 )+a)=4/3=-cota=4/3 所以cota=-4/3 因为a∈(3π/2 ,2π),所以sina=-4/5,cosa=3/5 所以cos(a-(3π/4))=cosacos3π/4 +sinasin3π/4 =3/5*(-√2/2)+(-4/5)√2/2 =-7√2/10