如图,货轮在海上以50浬/时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为155°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为125°.半小时后,货轮到达C点处,观测到灯塔A的方位角为80°.求此时货轮与灯塔之间的距离(得数保留最简根号).
问题描述:
如图,货轮在海上以50浬/时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为155°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为125°.半小时后,货轮到达C点处,观测到灯塔A的方位角为80°.求此时货轮与灯塔之间的距离(得数保留最简根号).
答
知识点:本题主要考查了解三角形的实际应用.解题的关键是建立三角函数的数学模型,运用三角函数的基础知识来解决实际问题.
在△ABC中,∠ABC=155°-125°=30°,∠BCA=180°-155°+80°=105°,∠BAC=180°-30°-105°=45°,BC=12×50=25,由正弦定理,得ACsin30°=BCsin45°∴AC=BC•sin30°sin45°=2522(浬)答:船与灯塔间的距离为25...
答案解析:在△ABC中利用三角形内角和求得∠BCA和∠BAC,则BC可求得,最后利用正弦定理求得AC.
考试点:解三角形的实际应用.
知识点:本题主要考查了解三角形的实际应用.解题的关键是建立三角函数的数学模型,运用三角函数的基础知识来解决实际问题.