如图所示,质量为M的托盘内放有质量为m的物体,开始时手托住托盘,弹簧的劲度系数为k,弹簧处于原长,现放手让托盘向下运动,求当系统运动到最低点时的加速度和物体对托盘的压力.

问题描述:

如图所示,质量为M的托盘内放有质量为m的物体,开始时手托住托盘,弹簧的劲度系数为k,弹簧处于原长,现放手让托盘向下运动,求当系统运动到最低点时的加速度和物体对托盘的压力.

设小球质量为m,加速度大小为a,弹力大小为F,弹簧原来处于原长,突然放手后,小球受到重力和弹簧的弹力,弹力大小随弹簧伸长的长度增大而增大.
开始阶段,重力大于弹力,小球向下做加速运动,此过程由牛顿第二定律得mg-F=ma,弹力F增大,加速度a减小.
后来,弹力大于重力,小球向下做减速运动,此过程由牛顿第二定律得F-mg=ma,弹力F增大,加速度a增大.
刚释放托盘时,托盘的加速度为g,方向竖直向下;所以当托盘运动到最低点时,加速度大小也为g,方向竖直向上.此时对物体受力分析:F支-mg=ma
所以F=2mg
则F=2mg
答:当系统运动到最低点时的加速度大小为g,方向竖直向上;而物体对托盘的压力为2mg.
答案解析:弹簧原来处于原长,突然放手后,小球受到重力和弹簧的弹力,弹力大小随弹簧伸长的长度增大而增大,开始阶段,重力大于弹力,小球向下做加速运动,后来弹力大于重力,小球向下做减速运动,根据牛顿第二定律分析加速度的变化情况.
考试点:牛顿第二定律;力的合成与分解的运用.
知识点:本题是含有弹簧的动态变化分析问题,关键分析小球的受力情况,来分析小球的加速度变化.