已知x≠0,且x+(1/x)=3,求(1)x^2+1/(x^2)的值,(2)x^4+1/(x^4)的值
问题描述:
已知x≠0,且x+(1/x)=3,求(1)x^2+1/(x^2)的值,(2)x^4+1/(x^4)的值
答
x+(1/x)=3
左右平方,二项式公式
(x+(1/x))^2=x^2+2+1/(x^2)=9
x^2+1/(x^2)=7
再平方
(x^2+1/(x^2))^2=x^4+2+1/(x^4)=49
x^4+1/(x^4)=47