求P=1/(√2+1)+1/(√3+√2)+1/(√4+√3)+...+1/(√2011+√2010)的整数部分a和小数部分b.

问题描述:

求P=1/(√2+1)+1/(√3+√2)+1/(√4+√3)+...+1/(√2011+√2010)的整数部分a和小数部分b.

因为1/(√m+√n)=√m-√n(m.n为连续的正整数)
所以P=1/(√2+1)+1/(√3+√2)+1/(√4+√3)+...+1/(√2011+√2010)
=√2-1+√3-√2+√4-√3+√5-√4+.√2011-√2010
=√2011-1
因为44^2=1936,45^2=2025
所以44