对于哥德巴赫猜想中提到的:把那个偶数看做n,n=a+b,(a、b均为非2质数),若a看做a(奇数),则b看做a+2x(x=自然数,2x为偶数),所以n=a+b=a+a+2x=2(a+x),所以偶数n只要保证除以二后再表示成奇数a、自然数b的
问题描述:
对于哥德巴赫猜想中提到的:把那个偶数看做n,n=a+b,(a、b均为非2质数),若a看做a(奇数),则b看做a+2x(x=自然数,2x为偶数),所以n=a+b=a+a+2x=2(a+x),所以偶数n只要保证除以二后再表示成奇数a、自然数b的和就能符合猜想,又因为所有大于二的偶数可看做2y(y在这种情况下大于等于2,定大于最小奇数1,剩下的数也定为自然数),符合保证,因此,猜想成立.你们怎么看?
答
貌似说得有理吧