如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,AB2=AP•AD. (1)求证:AB=AC; (2)如果∠ABC=60°,⊙O的半径为1,且P为AC的中点,求AD的长.
问题描述:
如图,△ABC内接于⊙O,过点A的直线交⊙O于点P,交BC的延长线于点D,AB2=AP•AD.
(1)求证:AB=AC;
(2)如果∠ABC=60°,⊙O的半径为1,且P为
的中点,求AD的长. AC
答
(1)证明:连接BP,∵AB2=AP•AD,∴ABAP=ADAB,又∵∠BAD=∠PAB,∴△ABD∽△APB,∵∠ABC=∠APB,∠APB=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)由(1)知AB=AC,∵∠ABC=60°,∴△ABC为等边三角形,∴∠BAC=60°...