当x趋近1时 求(e^x)(lnx)^2除以cosπ/2x(√x-1))的极限?

问题描述:

当x趋近1时 求(e^x)(lnx)^2除以cosπ/2x(√x-1))的极限?

lim(x->1) (e^x)(lnx)^2 / cosπ/2x(√x-1))=elim(x->1) ln(x)^2 / cosπ/2x(√x-1))(设t=x-1 x->1 所以t->0 且x=1+t)=e lim(t->0) ln²(1+t) / cos (π/(t+1)(√t+1-1))(ln(t+1)~t,√t+1 - t/2)=e lim(t->0) t&...恩恩是cos(π/2)x乘以那个cosπ/2x(√x-1))=cos(π/2)(t+1)=cos(π/2t+π/2)=-sin(π/2t)=-π/2t =e lim(t->0) t² / cosπ/2x(√x-1))=e lim(t->0) t² / (-π/2t)*(t/2)= -4e/π?????大约就是这个吧- -!