设函数f(x)=x/(2x+1),若数列{an}满足关系式an=f(a(n-1)),(且n>2),又a1=-1/2011
问题描述:
设函数f(x)=x/(2x+1),若数列{an}满足关系式an=f(a(n-1)),(且n>2),又a1=-1/2011
(1)求an的通项公式
(2)设bn=An/A(n-1),求bn的最大值与最小值,以及相应的n值
答
如果题目的条件改成n>=2的话,可以做,因为若是n>2,那么给出的首项a1就用不上,就算不出an的通项公式.做法如下:数列{an}满足关系式an=f(a(n-1)),将an代入函数得到an=a(n-1)/[2a(n-1)+1],上下同时除以a(n-1)得到an=1/[2...