sin420°×cos750°+sin(-330°)×cos(-660°)求过程
问题描述:
sin420°×cos750°+sin(-330°)×cos(-660°)求过程
答
原式=sin(360+60)×cos(720+30)+sin(-360+30)×cos(-720+60)
之后用sin和cos的公式化简,
sin(a+b)=sina*cosb+sinb*cosa
sin(a-b)=sina*cosb-sinb*cosa
cos(a+b)=cosa*cosb-sina*sinb
cos(a-b)=cosa*cosb+sina*sinb
答
sin420°×cos750°+sin(-330°)×cos(-660°)
=sin60cos30-sin30cos60
=sin(60-30)
=sin30
=1/2
答
你好,解答如下:
sin420°×cos750°+sin(-330°)×cos(-660°)
=sin60° ×cos30° + sin30° × cos60°
=sin(60° + 30°)
=sin90°
=1